Lecture 4. Linkage disequilibrium (LD). Inbreeding coefficient as probability. Inbreeding coefficient as fixation index.

1.7 Linkage disequilibrium (LD)

Two genes with two alleles each: A, a and B, b actual gamete frequencies (left) and linkage equilibrium frequencies (right)

	B	b	Tot		B	b	Tot
A	P_{11}	P_{12}	p_1	A	p_1q_1	p_1q_2	p_1
a	P_{21}	P_{22}	p_2	a	$p_{2}q_{1}$	p_2q_2	p_2
Tot	q_1	q_2	1	Tot	q_1	q_2	1

Measures of LD

$$P_{11} = p_1q_1 + D, P_{12} = p_1q_2 - D$$

 $P_{21} = p_2q_1 - D, P_{22} = p_2q_2 + D$

Basic LD measure $D = P_{11}P_{22} - P_{12}P_{21} = \text{Cov}(1_A, 1_B)$ depends on allele frequencies difficult to interpret

Correlation coefficient
$$r = \frac{D}{\sqrt{p_1 p_2 q_1 q_2}}$$
, $\hat{r}^2 = \frac{X^2}{n}$

Normalized D

$$D' = \frac{D}{D_{\text{max}}}$$
 if $D > 0$, where $D_{\text{max}} = \min(p_1 q_2, p_2 q_1)$
 $D' = \frac{D}{D_{\text{min}}}$ if $D < 0$, where $D_{\text{min}} = -\min(p_1 q_1, p_2 q_2)$

Ex 15: MN and Ss blood groups

Two genes in chromosome 4: alleles (M, N) and (S, s) British sample, 1000 ind, n = 2000 chromosomes Observed gamete counts and frequencies

		s	ı			S		Total
		611				0.237		
N	172	773	915	•		0.071		
Tot	616	1384	2000	•	Tot	0.308	0.692	1

Linkage equilibrium frequencies and counts

	S	s	Total		S	s	Total
Μ	0.167	0.375	0.542	М	334.2	750.8	1085
		0.317		Ν	281.8	633.2	915
Tot	0.308	0.692	1	Tot	616	1384	2000

Chi-square test of independence:
$$X^2 = 184.9$$
, df = 1 $\sqrt{184.9} = 13.6$, reject H_0 : linkage equilibrium $\hat{D} = 0.070$, $\hat{r} = 0.304$, $\hat{D}' = \frac{0.07}{0.141} = 0.5$

Attainment of linkage equilibrium

Changing D over generations under H-W assumptions Fig 3.9, p. 100: $D_0 \rightarrow D_1 \rightarrow D_2 \rightarrow ... \rightarrow 0$

$$D_t = D_0(1-\rho)^t$$
, where $\rho = \text{recombination fraction}$

Causes of LD

- 1. small ρ , chromosome inversion
- small t, recent mutation
- epistatic selection favoring some genotypes
- 4. effectively small ρ , excess of homozygotes

Ex 16: LD in plants

Two unlinked esterase genes in Barley

gametes	B_1D_1	B_1D_2	B_2D_1	B_2D_2
observed counts	1501	754	720	74
LE expected counts	1642.6	613.7	577.1	215.6

$$X^2 = 172.7$$
, df = 1, $D = -0.046$, $D' = 0.66$ significant LD due to 99% self-fertilization

Haldane's recombination model

Number of crossovers between two loci u Morgans apart $X_u \in \text{Pois}(u)$ [definition of 1 Morgan: $E(X_1) = 1$] $\rho = P(X_u \text{ is odd}) = \frac{1}{2}(1 - e^{-2u}), \, \rho \approx u \text{ for small } u$ $\rho \approx 0.5$ for large u, independent assortment

1.8 Inbreeding coefficient as probability

Two alleles are IBD if they are derived from a single allele in an ancestral HWE population For an individual genotype any locus is either autozygous: two IBD alleles, probability P(IBD) or allozygous: non IBD alleles, probability 1 — P(IBD)

Pedigree formula of inbreeding coefficient

$$F = P(IBD), F \ge 0$$

$$Fp = P(\text{autozygosity}) \times P(\text{ancestral allele is } A)$$

 $(1 - F)p^2 = P(\text{allozygosity}) \times P(\text{ancestors are } A, A)$
 $D = Fp + (1 - F)p^2 = p^2 + pqF$

1.9 Inbreeding coefficient as fixation index

Metapopulation = K partially isolated HWE subpop-s

Diploid population sizes $N_i = w_i N$, $w_1 + \ldots + w_K = 1$ genotype frequencies $D_i = p_i^2$, $H_i = 2p_i q_i$, $R_i = q_i^2$ Metapopulation averages

 $ar{p} = \sum_{i=1}^{K} p_i w_i$ $D_S = \sum_{i=1}^{K} p_i^2 w_i = \overline{p^2}, H_S = 2\overline{pq}, R_S = \overline{q^2}$

Observed variance of allele freqs across subpopulations $\sigma^2 = \overline{p^2} - (\overline{p})^2$

Complete allele fixation case: if $p_i = 0$ or 1, then $\sigma^2 = \bar{p} - (\bar{p})^2 = \bar{p}\bar{q}$

Total population = hypothetical fused population with random mating

Expected genotype frequencies for the total population

$$D_T = (\bar{p})^2, H_T = 2\bar{p}\bar{q}, R_T = (\bar{q})^2$$

Wahlund's principle

isolation breaking increases genetic variation

$$D_S - D_T = \sigma^2$$
, $R_S - R_T = \sigma^2$, $H_T - H_S = 2\sigma^2$

Isolation contributes to allele fixation

Fixation index
$$F_{ST} = 1 - \frac{H_S}{H_T} = \frac{\sigma^2}{\bar{p}\bar{q}}$$

Inbreeding effect of population structure

$$D_S = \bar{p}^2 + \bar{p}\bar{q}F_{ST}, R_S = \bar{q}^2 + \bar{p}\bar{q}F_{ST}$$

 $H_S = 2\bar{p}\bar{q}(1 - F_{ST})$

Literature:

- 1. D.L.Hartl, A.G.Clarc. Principle of population genetics. Sinauer Associates, 2007.
- 2. R.Nielson, M. Statkin. An introduction to population genetics: theory and applications, Sinauer Associates. 2013.